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ABSTRACT 

This study explores the use of a computational approach to the elimination of a known from an unknown voice 
exemplar in a forensic voice elimination protocol. A subset of voice exemplars from 11 talkers, taken from the 
TIMIT data base, were analyzed using a formant tracking program. Intra- versus inter-speaker mean formant 
frequencies are analyzed and compared. 

 
 

 

1. DESCRIPTION OF EXPERIMENT 

This study is an informal exploration of the use of a 
“computational approach” to differentiation between 
two or more voice exemplars from different or identical 
speakers, for use in a forensic voice elimination 
protocol. Normally, in a voice elimination protocol as 
described in Begault and Poza [1] and Gruber and Poza 
[2], an aural-spectrographic approach is used. In that 
approach, spectrographs are compared in a manner 
similar to that addressed by Tosi et al. [3] except that 
“critical listening" comparison between unknown and 
known exemplars is also performed. Aural-
spectrographic analysis is common to most speaker-
identification protocols; in reference [1,2] the known 

exemplars are elicited in a manner to have the talker 
imitate the unknown exemplar as closely as possible, so 
as to allow elimination on the basis of the 
spectrographic comparison without confounds resulting 
from inconsistent declamatory styles. 

It would be extremely useful to use a “computational 
approach” to further buttress the results of such an 
analysis. The computational approach addressed here 
pools the locus of formants F1, F2 and F3 and creates a 
mean value and standard deviation for each speaker. In 
addition, the fundamental frequency is also analyzed. 
Plotting the loci of F1-F2 and F2-F3 mean frequencies 
provides an additional means of visualizing the data. 
The general proposition examined here is notion that the 
average value of formant frequencies, in terms of F1-F2 
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and F2-F3 relationships, will be significantly different 
when compared from different talkers, and more similar 
when compared to speech from the same talker. 

This informal exploration of this so-called 
computational approach was inspired in part by the 
recent work of of Nolan and Grigoras [4] who have 
stated that “formants, whose frequencies and dynamics 
are the product of the interaction of an individual vocal 
tract with the idiosyncratic articulatory gestures needed 
to achieve linguistically agreed targets, are so central to 
speaker identity that they must play a pivotal role in 
speaker identification.” The implementation of F1-F2 
and F2-F3 analysis is embodied within the software 
developed by Grigoras (Catalina), that uses the formant 
tracking and spectrum analysis output of speech 
analysis software from the Speech, Music and Hearing 
department of the Royal Institute of Technology in 
Stockholm (KTH Wavesurfer) [5]. The present 
investigation has used both Catalina and ‘manual’ 
analysis based on the Wavesfurfer fomant data export. 

The visual inspection of comparison spectrographs is a 
gestalt pattern matching activity on the part of the 
examiner that is inherently subjective. A computational 
approach may infer that an examiner can remove 
subjective interpretation from the process of comparing 
two samples, compared to an aural-spectral 
examination, by simply applying the analysis (Figure 1). 
Nevertheless, the forensic process still involves multiple 
levels of examiner interpretation (lower part of Figure 
1), including decisions whether the speech recordings 
are of sufficient quality or adequate quantity; how 
material should be edited; and how to address the error 
rate of the technique (at this point unknown) and the 
criteria used for excluding or not excluding a match 
between exemplars. 1 

To explore how the computational approach might be 
helpful for forensic analysis, perhaps as a supplement to 
the aural-spectrographic technique, comparisons were 
made using voice exemplars that are at once similar and 
very different from actual forensic contexts. Male voice 
exemplars were harvested from the DR7 (American 
Midwest English) set from TIMIT speech data base 
developed some years ago by DARPA for development 

                                                             
1 Tosi et al. [3] found a 6.4 % false identification and 11.8% 
false elimination error rate under restricted conditions for 
spectrographic, non-aural speaker analysis, based on 250 
speakers, 29 examiners, and 34, 996 trials. 

and evaluation of automatic speech recognition systems 
[6].  

 

 

Figure 1. Abstraction of computational approach to 
speaker identification (‘discs’) with the intervention of 

subjective judgment within each stage (‘faces’). 

The TIMIT exemplars used contain, for each speaker, 
two common spoken phrases and eight different spoken 
phrases, for a total duration of about 30 seconds. These 
voice exemplars differ from normal forensic exemplars 
in that the recording quality is quite good. They are 
further characterized by having very similar aural 
quality, which is often the case when making forensic 
comparisons. Common sentences to all speakers: “She 
had your dark suit and greasy wash water all year”, and 
“Don’t ask me to carry an oily rag like that”. In 
addition, each of the eight speakers had 8 unique 
sentences (e.g., “she sounded as though they already 
existed”). Ideally, for computational analysis much 
longer samples would be available, but this is frequently 
not the case for forensic applications.  

Analysis of TIMIT material has potential for forensic 
analysis investigation in that assumptions regarding 
forensic speech samples can be tested without the 
confounding effects of low quality, while allowing 
comparison of different voices with similar dialect. The 
current test was especially challenging from the 
standpoint that speakers MCHH and MESR are very 
similar aurally and in some cases spectrographically.  

Other analyses are of interest. For instance, the 
fundamental frequency for eight speakers is shown in 
Figure 2.  The similarity of the mean F0 and magnitude 
of the standard deviations illustrates the difficulty in 
basing speaker identification or discrimination on the 
basis of the mean fundamental frequency alone. By 
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contrast, a temporal investigation may or may not reveal 
that MGRT has a more ‘sung’ quality (Sprechstimme) 
compared to a lower pitched, more monotone MKDR. 

 

 Figure 2. F0 plots (mean and standard deviation) for 
eight talkers from the TIMIT DR7 speech exemplars. 

2. ESTIMATE BIAS DUE TO UNVOICED 
SPEECH (ESTIMATOR ERROR) 

The following analyses illustrate the importance of 
removing unvoiced or silent portions of the waveform 
prior to analysis. Unvoiced phonemes such as stopped 
consonants (p, t, k) do not involve vibration of the vocal 
cords. A formant frequency estimator will produce 
erroneous values during these instances, as shown in 
Figure 3.  These data should be removed prior to 
analysis by editing. 2 

 

Figure 3. Errors produced by formant tracking analysis 
(boxed area). 
                                                             
2 Grigoras’ approach [4] cleverly bypasses this problem by 
only accounting for formant values when a fundamental 
frequency can be analyzed.  

Figure 4 shows for a 6 s segment from one speaker the 
effect of not excluding unvoiced segments, on each 
analyzed frame, for the F1-F2 estimate. The solid 
triangles result when unvoiced segments are removed; 
the open circles are ‘raw’ data. The effect of removing 
unvoiced segments on removing outliers and tightening 
of the data distribution can be clearly seen. The same 
effect can be seen with three other speakers that were 
analyzed.  

Figure 5 shows the effect on the mean values estimated 
for F2 (horizontal axis) versus F3 (vertical axis), for the 
same 6 phrase as analyzed in Figure 4. The filled 
symbols are for the condition with unvoiced speech 
present, the open symbols for the condition with 
unvoiced speech removed.  The effect is a significant 
upward biasing of the values for F2 and F3 

 

Figure 4. See text. 

 

Figure 5. See text. 
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A similar upward biasing of the mean value occurs 
when comparing a relatively short exemplar (6 s) to a 
longer exemplar (30 s) for a single speaker. Figure 6 
shows an overlay of Figure 4 of the long sample 
analysis. Figure 7 shows a comparison of short versus 
long sample effect on four speakers for F2-F3 analysis. 
Each symbol represents the same four speakers 
indicated in Figure 5. The lower mean value for each 
speaker occurs with the longer sample analysis, with the 
effect primarily on the estimation of the mean value of 
F3. 

 

 

Figure 6. See text. 

 

Figure 7. Horizontal axis = F2; vertical axis = F3. The 
lower value of F2 and F3 for each speaker results from a 
relatively longer sample (30 versus 6 s). See text. 

3. DIFFERENT SPEAKER COMPARISON 

Figure 8 shows a spectrographic comparison of the 
same material spoken by MCHH and MDLF. These two 
speakers are aurally more distinct than, for example, 
MCHH and MESR. Differentiation in the formant 
pattern is particularly evident in the phonemes 
corresponding in the words “had” and “greasy”. Mean 
formant analysis of the entire 30 s exemplar for “vowel 
categories” o, a, e and i are shown in Figure 93.  

 

Figure 8. Inter-speaker variability, MCHH and MDLF, 
spectrogram (frequency range is 0-4 kHz in all 
spectrograms shown; horizontal red lines cross at 1, 2 
and 3 kHz). 

 

Figure 9. Inter-speaker variability, MCHH and MDLF, 
F2-F3 comparison plot for all 10 exemplars (apx. 30 s). 
                                                             
3 Plots of F2-F3 for vowels were produced using Grigoras’ 
Catalina software. Vowel ‘frequency ranges’ are prescribed 
and are therefore categorical as opposed to ‘true’ vowels. 
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Figure 10 shows a spectrographic comparison of the 
same material spoken by MCHH and MESR, who are 
aurally similar. Mean formant analysis of the entire 30 s 
exemplar for vowel categories o, a, e and i are shown in 
Figure 11. Differentiation in the formant pattern is less 
evident in the spectrograph (e.g., “dark”, “water”) and 
greater overlap occurs between vowel categories a and e 
in Figure 11, compared to Figure 9. A similar result 
occurs when investigating the F1-F2 intersections 
graphically. 

 

 Figure 10. Inter-speaker variability, MCHH and MESR, 
spectrogram (frequency range is 0-4 kHz in all 
spectrogams shown). 

 

 Figure 11. Inter-speaker variability, MCHH and MESR. 
F2-F3 comparison plot. 

 

4. SAME VERSUS DIFFERENT SPEAKERS 

Next, the performance of computational analysis of 
speech exemplars from different versus identical 
speakers was compared. The ten TIMIT phrases used 
previously for MCHH and the ten used for MESR were 
again used. These phrases were divided into separate 
sound files comprised of five exemplars for each 
speaker, each approximately 15 s in duration.  Between 
MCHH and MESR, there was one identical phrase and 
four unique phrases between each group. As a result, the 
following sound files were formed: 

• MCHH group 1 (exemplars 1-5) 

• MCHH group 2 (exemplars 6-10) 

• MESR group 1 (exemplars 1-5) 

• MESR group 2 (exemplars 6-10) 

The hypothesis tested was that within-speaker 
comparisons  (MCCH group 1 compared to MCHH 
group 2; and MESR group 1 compared to MESR group 
2) would exhibit greater similarity than between-speaker 
comparisons (MCCH group 1 compared to MESR 
group 1; and MCHH group 2 compared to MESR group 
2). Alternatively, the inter-speaker versus intra-speaker 
variability would appear to be of about the same 
magnitude. F2-F3 intersections were examined since F3 
is commonly assumed to indicate individual 
characteristics. 

Figures 12-13 indicate the intra- and inter-speaker 
results for comparisons of each group. Figure 12 shows 
that, within speakers, there is either a slight difference 
between the two groups for some vowel categories, 
while other vowel categories (e, i) appear nearly the 
same. In Figure 13, MCHH versus MESR exemplars are 
compared for each group. There are only slightly greater 
differences for group 1 (top of Figure 13) than between 
the intra-speaker comparisons in Figure 12. However, 
the results for inter-speaker variability for group 2 in 
Figure 13 are nearly identical for the vowel categories o, 
a, and e; and in fact appear more ‘dead on’ than found 
in the intra-speaker comparisons. 
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 Figure 12. Intra-speaker variability, Top: MCCH group 
1 compared to MCHH group 2. Bottom: MESR group 1 

compared to MESR group 2. 

5. CONCLUSION 

Overall, within the very restricted material analyzed 
here, the results overall do not support the hypothesis 
that the statistical approach to determining mean 
formant frequencies will allow discrimination of same 
versus identical speakers. This can partially be 
explained by inadequate sample size. Figure 7 showed 
that longer versus short samples (6 s versus 30 s) result 
in a consistent upward bias for the estimation of F3. 
Here, 15 s of material was used. Longer samples may 
converge more towards ‘true’ means, and more precise 
means of analyzing formants for specific vowels as 
opposed to vowel categories may or may not improve 
the technique. 

 

 
Figure 13. Inter-speaker variability. Top: MCCH group 
1 compared to MESR group 1. Bottom: MCHH group 2 

compared to MESR group 2. 

This paper was meant to give an exploratory look at the 
use of computational analysis of mean formant analysis 
using controlled material (aurally similar speakers with 
full bandwidth). Other examples not shown here have 
given confirmatory support to exclusion based on aural-
spectral analyses. Further study is recommended, 
particularly with material more representative of 
forensic recordings.  
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